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ABSTRACT
We describe our approach for automatically generating presenta-
tion slides for scientific papers using deep neural networks. Such
slides can help authors have a starting point for their slide genera-
tion process. Extractive summarization techniques are applied to
rank and select important sentences from the original document.
Previous work identified important sentences based only on a lim-
ited number of features that were extracted from the position and
structure of sentences in the paper. Our method extends previous
work by (1) extracting a more comprehensive list of surface fea-
tures, (2) considering semantic or meaning of the sentence, and (3)
using context around the current sentence to rank the sentences.
Once, the sentences are ranked, salient sentences are selected using
Integer Linear Programming (ILP). Our results show the efficacy of
our model for summarization and the slide generation task.

CCS CONCEPTS
• Computing methodologies → Neural networks; Classifica-
tion and regression trees; • Information systems → Document
topic models; Retrieval models and ranking.

KEYWORDS
Natural Language Processing, Text Mining, Slide Generation, Sum-
marization, Deep Learning

1 INTRODUCTION
Scientific results are usually disseminated by publications and re-
search presentations. The latter has been a convention for almost
all scientific domains since it provides an efficient way for others
to grasp the major contribution of a paper. Currently, PowerPoint
automates slide formating and thus significantly reduces the effort
to make professional and useful slides. However, PowerPoint can-
not automatically generate slides based on the content of research
papers. Automatically generating slides would not only save the
presenters’ time in preparing presentations, but it also provides
a way to summarize paper and it can also be used to generate
summaries for papers that do not have publicly available slides.

The twomajor approaches for summarization are abstractive and
extractive methods. Abstractive approaches summarize text using
words not necessarily appearing in the original document. Extrac-
tive summarization focuses on identifying important constituents
usually at the sentence level and connecting them to generate a
text snippet, which is usually significantly shorter than the original
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document. This method has been applied in slide generation tasks,
e.g., [6]. This is because (1) the selected sentences have correct
grammatical structure and (2) they are scientifically/technically
consistent with the original article.

The two major components of extractive summarization are
sentence scoring and sentence selection. The goal is to keep
salient sentences while excluding redundant information. Sentence
scoring is usually converted to a regression problem. The scores
depend on features extracted from the current sentence and its
contextual sentences.

Figure 1: Slide Generation flow chart

The main contributions of this paper are the following.

(1) To the best of our knowledge, we are the first to use Deep
Neural models to encode sentences and its context as new
features in sentence ranking to build slides.

(2) We combine regression with integer linear programming
(ILP) to select salient sentences. Then, noun phrases are
extracted from the selected sentences to build the first-level
bullet points in slides.
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Here, we focus on the textual components. This approach can later
be enhanced with visual effects, e.g., figures and tables, in order to
make better more complex slides.

2 RELATEDWORK
There has been much work on text summarization using both ab-
stractive and extractive methods. However, automatic generation
of slides, which can be seen as a specific form of summarization of
scholarly papers, has not been well studied.

2.1 Summarization
Unsupervised Models. Identifying important sentences for generat-
ing a limited length summary can be formalized as an optimization
problem which can be NP-hard. Maximum Marginal Relevance
[2] has been used to heuristically select salient sentences while
keeping redundancy with the selected summary at the lowest point.
Sentence selection could be converted to the Knapsack problem
by maximizing the total scores of the selected sentences given the
length limit and can be solved by Integer Linear Programming (ILP).
ILP is an optimization method with linear constraints and objec-
tive functions [13]. Graph-based summarization methods model a
document as a graph, in which vertices are sentences and edges
are the similarity of vertices. One example is TextRank [14] which
extends Google’s PageRank. TextRank selects important sentences
that have a high degree of overlapping tokens with other sentences.
LexRank [5], a stochastic graph-based method, measures the sen-
tence importance by eigenvector centrality of the sentences in the
graph.

Feature-Based Models. Many traditional extractive summarization
approaches use feature-based models such as term frequency, an
effective feature. Other features include the length and position of
sentences [18]. The Support Vector Regressor was applied to score
and extract salient sentences [9]. Others have modeled a document
as a sequence of sentences and label each sentence with 1 or 0 in
which 1 indicates that the corresponding sentence belongs to the
summary [19] and a 0 not. Hidden Markov models (HMM) have
been adopted to solve such sequence labeling problems [4].

Deep Neural Network Models. State-of-the-art models now use deep
neural networks which benefit from both the semantics of the
sentences and their structure [7, 8]. Zhou et al. used multiple layers
of bidirectional Gated Recurrent Units (GRU) to jointly learn the
scoring process and the selection of sentences [23]. This work
applies bi-GRU to make sentence embeddings and then combines
sentence vectors with another bi-GRU layer to make document
level representations.

2.2 Slide Generation
Previously, a method was proposed to generate slides from docu-
ments by identifying important topics and then adding their related
sentences to the summary [12]. A tool called PPSGen applies a
Support Vector Regressor for sentence ranking and then ILP to
select important sentences with a set of sophisticated constraints
[6]. Another method generates slides by phrases extracted from
papers [22]. The model learns the saliency of each phrase and the
hierarchical relationship between a pair of phrases to make the

bullet points and to determine their place in the slide. However,
their model was tested on a limited set of only 175 paper-slide pairs.

Compared with previous works, we use a combination of feature
based and deep neural network methods to score sentences. Then,
ILP is applied to build the summary. To transform the summary
into a slide format, first-level bullet points are generated using key
phrases extracted from the selected sentences.

3 MODEL
The summarization system consists of 2 steps. The first is to train a
model to calculate scores used to identify important sentences. The
second is to extract salient sentences under constraints. The model
is trained on a corpus of aligned pairs of papers and slides. In the
training process, we investigate Convolutional Neural Networks
(CNN), Gated Recurrent Unit (GRU), and Long Short Term Memory
(LSTM) using pre-trained word embeddings (WE) to represent the
semantic feature of sentences. This semantic representation is en-
hanced by combining other surface features of the current sentence
and its contextual features. The high-level architecture is shown in
Figure 1.

Figure 2: Architecture to predict salience score of a sentence
Si . Sj (j , i) are contextual sentences. Three types of embed-
dings are combined as an input toMLP to output the score of
sentence Si . The CNN could be replaced with LSTM or GRU.

3.1 Sentence Labeling
In this section, we describe how to generate the ground truth by
assigning scores to sentences in a paper given a paper-slide pair.
An academic paperD can be represented as a sequence of sentences
D = {s1, s2, . . . , sn }. Each sentence is represented by the set of its
unigrams and bigrams, such as si = {t1, t2, . . . , tk , t1t2, t2t3, . . . , tk−1tk }
where ti is the i-th token in the sentence. The corresponding pre-
sentation of the document D can be represented as a sequence of
slides P = {p1,p2, . . . ,pm }. The salience score of each sentence
is determined by the highest Jaccard similarity of unigrams and
bigrams between a sentence and all slides in the corresponding
presentation.

∀si ∈ D, scoresi = max
pj ∈P

Jaccard(si ,pj ) (1)

The Jaccard similarity of si andpj sets is defined as Jaccard(si ,pj ) =
si
⋂
pj

si
⋃
pj

.
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Having the labeled sentences with their scores, we can start
training different models to learn the scoring functions.

3.2 Sentence Ranking
The goal of the sentence ranking module is to train a model f (si |ϕ)
that minimizes the Mean Square Error (MSE) defined as below:

∀si , 0 ≤ f (si |ϕ) ≤ 1 (2)

MSE =
∑
si

(f (si |ϕ) − scoresi )
2 (3)

in which ϕ is sentence embedding combined with syntactic and
contextual features.

The sentence ranking model consists of three modules. The first
models the meaning of a sentence using a deep neural network
that embeds the sentence itself into a vector. The second evalu-
ates the capability of the sentence to summarize its contextual
sentences. The last extracts a variety of surface features from the
sentence structure and its position in the paper. The results from
all of the three modules are combined to build the input for the
final Multi-Layer Perceptron (MLP) with two hidden layers which
acts as a regressor to predict the final score for a sentence. Figure
2 depicts the embedding layers for the construction of sentence
representation vectors.

3.2.1 Semantic Embedding. In this layer, the semantic of a sentence
is encoded into a vector. We compare the performance of both
convolutional and recurrent networks in order to choose the best
system for semantic embedding.

Convolutional Neural Network (CNN): In this layer, the se-
mantic representation of a sentence si is generated by concatenating
embeddings of bi-grams. The intuition is that bi-grams preserve
the sequential information of the text. Convolutional layers and
element-wise max-pooling on top of the bigram embeddings cap-
ture important patterns in the sentence that match similar patterns
in the reference slides.

The bigram representations are calculated by concatenating pre-
trained word embeddings of tokens in the bigram.

biдramj = [vj ,vj+1] (4)

In which vj and vj+1 stand for the current and the next word
vectors in sentence si .

Vbiдramj = tanh(biдramj ∗Wc + b) (5)

Where filterWc ∈ R2 |vj |∗ |vj | is applied on a vector of two words
to make new features. The activation function is the Hyperbolic
Tangent and b is bias term.

Vsi = max
0<j< |si |−1

Vbiдramj (6)

where the max function is an element-wise max pooling and Vsi is
the semantic embedding of sentence si [3].

Recurrent Neural Network (RNN): The convolutional layers
above can model the sequential patterns up to 2 consecutive tokens.
However, RNNs are able to capture the dependencies of tokens in
long sentences. Both LSTM and GRU have been widely used to
remember long term dependencies by keeping memory/state from

previous activations instead of replacing the entire activation like
a vanilla RNN.

LSTM: The LSTM tracks long term dependencies via input (it ),
forget (ft ), and output (ot ) gates; the input gate regulates howmuch
of the new cell state to keep, the forget gate forgets a portion of
existing memory and the output gate sends important information
in the cell state to the next layers of the network.

GRU: The GRU operates using a reset gate and an update gate.
The reset gate decides how much of the past information to forget,
and the update gate helps the model to determine how much of the
past information needs to be passed to the future.

The input to the recurrent units are pre-trained word vectors
and the unit outputs are combined to build the sentence semantic
embeddings.

3.2.2 Context Embedding. The context of a sentence is defined as
sentences before and after the current sentence. Intuitively, the
sentence that includes an abstract of its context is more important
and should have a higher chance to be selected for the summary of
the paper. For instance, some paragraphs are ended by a sentence
that summarizes the whole paragraph. This sentence probably has
a high word overlap with other sentences of the paragraph. Contex-
tual sentence relations have been used to model attention weights
of sentences and then to identify important sentences [17]. The
context information is embedded as the following vectors.

prevSi =

cos(Vsi , Vsi−1 )
cos(Vsi , Vsi−2 )
cos(Vsi , Vsi−3 )

 , nextSi =

cos(Vsi , Vsi+1 )
cos(Vsi , Vsi+2 )
cos(Vsi , Vsi+3 )

 (7)

3.2.3 Syntactic Embedding. The models suggested in the above
focus on representing the meaning of the sentences and their con-
text into vectors. Although semantic features are strong metrics for
identification of salient sentences, surface features are also proved
to be important [6]. The surface features we extracted are tabulated
in Table 1.

The “section” feature is a one-hot vector to represent the section
that sentence belongs to. Certain sections, such as conclusion, can
be more important to indicate sentence importance compared with
other sections such as acknowledgment. Table 2 shows the average
scores of the sentences in a set of pre-defined sections calculated
from the labeled paper-slide pairs. The table indicates that Intro-
duction and Conclusion sections are relatively more important than
the other sections.

The second feature is the relative position of the sentence in the
section in units of sentences.

The other features #NP, #VP, #S, and “height” are obtained from
the parse tree of the sentence. #NP shows the number of noun
phrases in the sentence, #VP counts verb phrases, #S indicates the
number of sub-sentences and “height” is the height of the sub-tree.
We used Stanford CoreNLP that outputs tree structures consisting
of constituent noun and verb phrases.

The stop_word%, #tokens, and “length” are ratios of the stop
words among tokens, number of tokens and number of characters
in the sentences, respectively.
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The “paper_title_similatiry” is the Jaccard similarity between
the tokens in the title of the paper and the sentence. The “sec-
tion_title_similarity” is the Jaccard similarity of the section title
and the current sentence.

The “average_IDF” feature is the average of IDF scores of tokens
of the sentence and “average_TF” takes the average of the TF scores.

3.3 Sentence Selection
The model above generates a salience score for each sentence in
the paper. Next, we compared a greedy method and the ILP for
sentence selection.

3.3.1 Greedy Method. In this intuitive approach, sentences are
ranked based on their salience scores and then are added to the
summary while the bigram overlap is less a threshold θ and the
summary size does not exceed a maximum limit. The threshold
parameter is tuned to be θ = 0.7 as higher or lower amounts result
in worse performance.

3.3.2 Integer Linear Programming (ILP). ILP is an optimization
problem with linear constraints and objective functions. ILP re-
stricts some of the variables to be integers and it is NP-complete.
We adopted the IBM CPLEX Optimizer1, which has been used to
solve ILP problems efficiently.

We aim to maximize the following objective function:

max
∑
i ∈Ns

liWixi , subject to: (8)∑
i
lixi < maxLen, ∀i, xi ∈ {0, 1} (9)

whereWi is the sentence scores generated by the deep model
suggested in the paper. The xi is a binary variable showing whether
sentence i is selected for the summary or not. The li is the number
of characters in sentence i and Eq. (9) sets a constraint to limit the
size of the summary to a maximum lengthmaxLen. Existence of li
in the Eq. (8) helps to penalize short sentences.

3.4 Slide Generation
Typical presentation slides include a limited number of bullet points
which is often the first-level of the slide structure. These bullet
points are usually noun phrases or shortened versions of sentences.
Some slidesmay contain second-level bullet points for further break-
downs. Less than 8% of the content of the presentations in the
ground truth corpus is covered in third-level bullets. Therefore, we
generate slides with up to 2 bullet levels. Slide titles on average
contains 4 words and either Level 1 or Level 2 bullets contains on
average 8 words. Each slide is on average made of 36 words in 5
bullets and each level-1 bullet includes 2 second-level bullets.

The deep neural model first ranks the sentences and then ILP
helps to select salient sentences by considering the length of the
sentences and length limit for the generated presentation. These
selected sentences are considered as the second-level bullets. The
first-level bullets are the noun phrases extracted from the sentences.
Some of the noun phrases are removed from the candidate set if
(1) They have more than 10 tokens.(2) They have only 1 token. (3)
Their DF is higher than 10. Noun phrases with a high degree of
1https://www.ibm.com/products/ilog-cplex-optimization-studio

document frequency are not informative enough to be added as a
bullet point such as “the model”.

Once a set of candidate noun phrases is selected, they are sorted
based on the average frequency of their tokens. The noun phrases
and the sentences containing them are added to the slides in order of
their frequency until all of the selected sentences by the model are
covered in the slides. The slide generation process is demonstrated
in Algorithm 1.

In order to set the titles of the slides, the section of the first
sentence in the slide is determined and then the heading of the
section is borrowed from the paper as the title of the slide. The
heading is truncated to the first 5 tokens. We constrain a maximum
of 4 sentences per slide. If a topic has more than 4 related sentences,
the slide is split into two distinct ones.

Data: sentences
Result: slides
ranked_sents = rank(sentences);
selected_sents = ILP(ranked_sents);
NPs = {} ; // dictionary of NPs and a list of its

sentences

for s ∈ selected_sents do
for np ∈ noun_phrases(s) do

NPs[np].add(s)
end

end
freq_rank(NPs); // rank noun phrases based on

frequency of tokens

slides=[];
while selected_sents , ∅ do

for np, sents ∈ NPs do
splides[np] = [];
for s ∈ sents do

if s ∈ selected_sents then
slides[np].add(s);
selectet_sents \ {s};

end
end

end
end
distribute_sents(slides) ; // allow a maximum of 4

sentences per slide
Algorithm 1: Bullet Point Generation.

4 EXPERIMENTS
4.1 Data
The dataset is a collection of 1200 scientific papers and their corre-
sponding presentation slides made by their authors. This dataset
is adopted from a previous project called PPSGen [6]. The dataset
contains conference proceedings in computer science in PDF for-
mat. To extract the header metadata and content of the paper from
PDF files, GROBID [11] is used and information is transformed
into an XML file with the TEI (Text Encoding Initiative) format, a
comprehensive encoding standard for machine-readable texts.
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Table 1: Sentence surface features

Feature Type Description

section one-hot vector Section (Intro, Related, Model, Result, Conclusion, Acknowledge) of the sentence
position index Position of the sentence in the section
height integer Height of the Parse tree of the sentence
#NP integer Number of noun phrases in the sentence
#VP integer Number of verb phrases in the sentence
#S integer Number of sub-sentences in the sentence
length integer Number of characters in sentence
stop_word% float Ratio of the stop words in the sentence
#tokens integer Number of tokens in the sentence
paper_title_similarity float Jaccard similarity of the sentence to the title of the paper
section_title_similarity float Jaccard similarity of the sentence to the title of the section
average_IDF float Average of the IDF scores of tokens
average_TF float Average of the frequency of tokens in the paper

The slides are either in PDF or PPT format. The PPT files are
first converted to PDFs. Then, the text in presentations is extracted
by the LibreOffice pdftotext tool.

4.2 Model Configuration
Stanford CoreNLP 3.9.2 is used to tokenize and lemmatize sentences
to the constituent words and also to build the parse trees. The
word embeddings are initialized with GloVe 1.2 [16] 50-dimensional
vectors trained onWikipedia. The pre-trained GloVe vectors contain
400,000 words and cover 98.9% of our model vocabulary. The rest
of the word embeddings are randomly initialized using a Gaussian
distribution. Drop out layers with probability p = 0.3 are added to
the recurrent model to randomly remove some of the neurons from
the network in order to prevent over-fitting [20]. Adam optimizer
with L2-norm regularization and mini-batches of size 100 are used
to train the model. The learning rate was set to 0.0001 and the model
is trained for 50 epochs. We truncate each sentence containing more
than 200 words.

4.3 Evaluation Metric
The Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
[10] is a standard metric for automatic evaluation of machine-
generated summaries. ROUGE-N is an n-gram overlap between
a candidate summary and a reference summary. The recall-oriented
score (Re) and the precision-oriented score (Pr ) are computed as
follows:

Re =

∑
д∈Ref erence Countmatch(д)∑
д∈Ref erence Count (д)

(10)

Pr =

∑
д∈Ref erence Countmatch(д)∑
д∈Candidate Count (д)

(11)

Table 2: Score distribution of sentences in the ground truth corpus.

Section Intro Related
Work

Model Result Conclusion Acknowle-
dgement

Avg Score 44.29 38.92 39.09 42.42 51.02 31.18
#sentences 25494 18316 8924 6955 7036 722

whereд stands for ann-gram in the reference summaryRe f erence ,
n is its length, Countmatch(д) is the number of shared n-grams be-
tween the candidate Candidate and the reference summary and
Count(д) is the number of n-grams in reference or candidate sum-
mary. The F-measure score(F ) is harmonic mean of Pr and Re .

ROUGE-L [10] is similarly defined based on the Longest Common
Sub-sequence (LCS) and ROUGE-W is Weighted Longest Common
Sub-sequence developed to differentiate LCSs of different spatial
relations. ROUGE-W gives more weight to the sequences that are
spatially closer to each other [10].

Empirically, ROUGE-2 is more suitable for single document sum-
maries compared with ROUGE-1 [10, 15].

4.4 Result
We compared our model with the following baselines listed as
follows:

(1) AvgTFIDF: Thismodel ranks sentences based on theAvg(TF )×
Ave(IDF ) named AvgTFIDF scores of the tokens in sentence.
The model greedily adds the sentences to the summary until
it hits the size limit.

(2) TextRank: TextRank is a graph-based algorithm where ver-
tices are sentences and the edge weights are the cosine simi-
larity of the sentence embeddings [1].

(3) MEAD: MEAD is a publicly available platform for multi-
lingual summarization. The platform implements a combi-
nation of position-based and centroid-based algorithms to
score the sentences [21].

The results for the ROUGE scores are shown in Table 3. Our
model with the CNN neural structure and ILP sentence selector
achieved the best F scores in terms of ROUGE-2, ROUGE-L, and
ROUGE-W compared with the baselines.

Intuitively, LSTMs should have shown a better performance in
representing sentences with long dependencies. However, they are
prone to over-fitting since there are many parameters to be tuned.

ILP always outperforms the simple greedy algorithm. The reason
is that it is able to recognize if adding multiple shorter and less
important sentences will result in better ROUGE scores compared
with having fewer long and more important sentences.
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Table 3: ROUGE Scores

model selector ROUGE-1 ROUGE-2 ROUGE-L ROUGE-W

Pr% Re% F% Pr% Re% F% Pr% Re% F% Pr% Re% F%

AvgTFIDF Greedy 41.94 30.02 32.06 11.50 7.89 8.46 21.37 15.77 16.93 8.45 1.56 2.46
AvgTFIDF ILP 41.45 30.53 32.24 11.31 8.00 8.48 23.17 17.36 18.51 9.21 1.72 2.71
TextRank Greedy 41.04 31.87 32.79 11.09 8.28 8.60 22.61 17.75 18.49 8.77 1.71 2.66
MEAD Greedy 44.58 35.00 35.86 12.49 9.31 9.65 22.84 18.19 18.84 8.90 1.76 2.73
GRU Greedy 40.53 33.63 35.54 11.18 8.86 8.91 20.09 16.80 17.01 7.77 1.66 2.53
GRU ILP 40.28 34.17 33.73 11.06 8.96 8.92 22.55 18.99 19.16 8.84 1.89 2.88
LSTM Greedy 40.04 34.26 33.61 11.60 9.44 9.37 22.20 18.87 18.93 8.71 1.88 2.86
LSTM ILP 40.26 34.94 34.08 11.58 9.46 9.59 22.58 19.46 19.40 8.83 1.94 2.94
CNN Greedy 41.92 33.93 34.28 12.33 9.50 9.71 21.65 17.67 18.10 8.49 1.76 2.73
CNN ILP 41.80 34.74 34.74 12.19 9.70 9.79 23.45 19.46 19.79 9.24 1.94 2.98

5 CONCLUSION AND FUTUREWORK
Although summarization has been well studied, the task of auto-
matically generation of slides is relatively new. This paper uses
neural network models to encode syntax, semantics, and context
of sentences as features to automatically generate slide content.
A multilayer perceptron on top of sentence embeddings acts as a
regressor that ranks the sentences. Our model then selects salient
sentences with the constraint of a limit on summary length. Our
method shows higher ROUGE scores compared with the introduced
baselines which we interpret to mean that the slides generated have
a high overlap with manually made slides.

The software implementation of the model is available at GitHub:
https://github.com/atharsefid/Automatic-Slide-Generation.

6 ACKNOWLEDGEMENTS
The National Science Foundation is gratefully acknowledged for
partial support.

REFERENCES
[1] Federico Barrios, Federico López, Luis Argerich, and Rosa Wachenchauzer. 2016.

Variations of the Similarity Function of TextRank for Automated Summarization.
CoRR abs/1602.03606 (2016). arXiv:1602.03606 http://arxiv.org/abs/1602.03606

[2] Jaime GCarbonell and Jade Goldstein. 1998. The Use of MMR and Diversity-Based
Reranking for Reodering Documents and Producing Summaries. (1998).

[3] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing (almost) from scratch.
Journal of machine learning research 12, Aug (2011), 2493–2537.

[4] John M Conroy and Dianne P O’leary. 2001. Text summarization via hidden
markov models. In Proceedings of the 24th annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM, 406–407.

[5] Günes Erkan andDragomir R Radev. 2004. Lexrank: Graph-based lexical centrality
as salience in text summarization. Journal of artificial intelligence research 22
(2004), 457–479.

[6] Yue Hu and Xiaojun Wan. 2015. PPSGen: Learning-based presentation slides gen-
eration for academic papers. IEEE transactions on knowledge and data engineering
27, 4 (2015), 1085–1097.

[7] Hayato Kobayashi, Masaki Noguchi, and Taichi Yatsuka. 2015. Summarization
based on embedding distributions. In Proceedings of the 2015 conference on empir-
ical methods in natural language processing. 1984–1989.

[8] Chen Li, Xian Qian, and Yang Liu. 2013. Using supervised bigram-based ILP
for extractive summarization. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 1004–
1013.

[9] Sujian Li, You Ouyang, Wei Wang, and Bin Sun. 2007. Multi-document summa-
rization using support vector regression. In Proceedings of DUC. Citeseer.

[10] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[11] Patrice Lopez. 2009. GROBID: Combining Automatic Bibliographic Data Recogni-
tion and Term Extraction for Scholarship Publications. In Proceedings of the 13th
European Conference on Research and Advanced Technology for Digital Libraries
(ECDL’09). 473–474.

[12] Utiyama Masao and Hasida Kôiti. 1999. Automatic slide presentation from
semantically annotated documents. In Proceedings of the Workshop on Coreference
and its Applications. Association for Computational Linguistics, 25–30.

[13] Ryan McDonald. 2007. A study of global inference algorithms in multi-document
summarization. In European Conference on Information Retrieval. 557–564.

[14] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In
Proceedings of the 2004 conference on empirical methods in natural language pro-
cessing.

[15] Karolina Owczarzak, John M Conroy, Hoa Trang Dang, and Ani Nenkova. 2012.
An assessment of the accuracy of automatic evaluation in summarization. In Pro-
ceedings of Workshop on Evaluation Metrics and System Comparison for Automatic
Summarization. Association for Computational Linguistics, 1–9.

[16] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[17] Pengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Jun Ma, and Maarten de
Rijke. 2017. Leveraging contextual sentence relations for extractive summariza-
tion using a neural attention model. In Proceedings of the 40th International SIGIR
Conference on Research and Development in Information Retrieval. 95–104.

[18] Pengjie Ren, Furu Wei, CHEN Zhumin, MA Jun, and Ming Zhou. 2016. A
redundancy-aware sentence regression framework for extractive summarization.
In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. 33–43.

[19] Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and Zheng Chen. 2007. Document
summarization using conditional random fields.. In IJCAI, Vol. 7. 2862–2867.

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[21] DR Timothy, T Allison, S Blair-goldensohn, J Blitzer, A Elebi, S Dimitrov, E
Drabek, A Hakim, W Lam, D Liu, et al. 2004. MEAD a platform for multidocu-
ment multilingual text summarization. In International Conference on Language
Resources and Evaluation.

[22] Sida Wang, Xiaojun Wan, and Shikang Du. 2017. Phrase-based presentation
slides generation for academic papers. In 31st AAAI Conference.

[23] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun
Zhao. 2018. Neural document summarization by jointly learning to score and
select sentences. arXiv preprint arXiv:1807.02305 (2018).

https://github.com/atharsefid/Automatic-Slide-Generation
http://arxiv.org/abs/1602.03606
http://arxiv.org/abs/1602.03606

	Abstract
	1 Introduction
	2 Related Work
	2.1 Summarization
	2.2 Slide Generation

	3 Model
	3.1 Sentence Labeling
	3.2 Sentence Ranking
	3.3 Sentence Selection
	3.4 Slide Generation

	4 Experiments
	4.1 Data
	4.2 Model Configuration
	4.3 Evaluation Metric
	4.4 Result

	5 Conclusion and Future Work
	6 acknowledgements
	References

